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Dimension Spectrum of Axiom A Diffeomorphisms. 
II. Gibbs Measures 
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We compute the dimension spectrum .f(~t) of the singularity sets of a Gibbs 
measure defined on a two-dimensional compact manifold and invariant with 
respect to a C 2 Axiom A diffeomorphism. This case is the generalization of the 
case where the measure studied is the Bowen-Margulis measure--the one that 
realizes the topological entropy. We obtain similar results; for example, the 
function f is the Legendre-Fenchel transform of a free energy function which is 
real analytic (linear in the degenerate case). The function f i s  also real analytic 
on its definition domain (defined in one point in the degenerate case) and is 
related to the Hausdorff dimensions of Gibbs measures singular with respect to 
each other and whose supports are the singularity sets, and we finally decom- 
pose these sets. 

KEY WORDS: Multifractal. thermodynamic formalism; Hausdorff dimen- 
sion; free energy function; large deviations; Gibbs measures. 

INTRODUCTION 

O u r  a im  is to  s t u d y  the  d i m e n s i o n  s p e c t r u m  of  a G i b b s  m e a s u r e  def ined  o n  

a t w o - c o m p a c t  m a n i f o l d  a n d  i n v a r i a n t  wi th  respec t  to  a C 2 A x i o m  A dif- 

f e o m o r p h i s m .  T h i s  a r t ic le  fo l lows ref. 21, whe re  we s t ud i ed  the  s a m e  

p r o b l e m  in a n  i m p o r t a n t  p a r t i c u l a r  case,  the  case  w h e r e  the  m e a s u r e  is the  

B o w e n - M a r g u l i s  m e a s u r e ,  the  o n e  t h a t  ach ieves  the  m a x i m u m  of  t o p o l o g i -  

cal e n t r o p y  (it  is the  G i b b s  m e a s u r e  of  0);  t he  p r e s e n t  p a p e r  is the  s e c o n d  

p a r t  of  th is  work .  W e  shal l  see t h a t  the  resu l t s  a re  very  s imi la r ,  a n d  the  

p roofs  pa ra l l e l  in  gene r a l  t h o s e  in ref. 21. Le t  us  r e m a r k  t h a t  the  o r ig ina l  

idea of  th is  w o r k  c o m e s  f r o m  ref. 2, w h e r e  o n e  s tud ies  the  d i m e n s i o n  
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spectrum of some dynamical systems (Markovian transformations) defined 
on the interval or  the circle. 

Multifractal analysis is concerned with the study of  ratios of the 
measures of small sets U (I UI ~ O, where I UI denotes its diameter), and we 
want to obtain some information in the so-called singularity sets defined 
for any positive real ~: 

c :  = {xl~,+(x)=c,}, c ;  = { x / ~ - ( x )  = ~,}, c~= c~ + ,.., c ;  

(0.1) 

where the maps ~ + and ~ -  denote local dimensions and are defined by 

Log ~(U)  Log ~(U)  
~ + ( x ) =  lim and ~ - ( x ) =  lim (0.2) 

.v~int(U) Log [U[ x~i,t---?vl Log [UI 
IuI 4 o  I U 1 4 0  

There exists a unique real ~ (when the measure p is ergodic) which satisfies 

~(x) = ~ p a.e. and p(C~,) = 1 

In the case where for different values of  0~ the sets C,  are not empty, we 
compute their Hausdorff  dimensions in order to differentiate them, and we 
define the dimension spectrum f (~ )  by 

f ( ~ ) = H D ( C ~ )  ( a n d f -  - ~  if C~=  ~ )  (0.3) 

Our  main results are: 

�9 f ( ~ )  = H D ( C , )  for ~ ~ 1-~1; ~2] c ~ +* and f -  - oo otherwise. 

�9 f is real analytic on ] ~ ; ~ 2 [  when c~, ~ 2  (in particular, we make 
explicit the degenerate case ~, = ~z)- 

�9 f ( o t ) = H D ( p ~ ) = i n f { H D ( A ) / p , ( A ) = I } ,  where p ,  is a measure 
whose support is C, ,  and there exist positive reals z and q such that 

Ec~;c~]~c~  

where [ . ; - ]  denotes a local product,  TM ts, zJ~ and these two sets have the 
same Hausdorff  dimensions. 

The notations and definitions are the same as in ref. 2I. The measure 
/a is the Gibbs measure of a real H61der continuous function ~b: A -~ R, 
where the basic set A is the support  of the measure ~, which is the unique 
measure which achieves the pressure of ~b, 
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A n a l o g y  w i t h  Part  I 

We first establish a "decomposit ion" of  the measure p, not  like a 
product such as the Bowen-Margul is  measure, but like 

d~ 
C<'d(p, xl~,) <~ C 

where c and C are positive constants and p" (resp. p'~) is a measure defined 
on the unstable (resp. stable) manifold. 

With this decomposit ion we prove that f is the Legendre-Fenchei  
transform of a free energy function F, i.e., 

f (cx)= inf {t~--F(t)} (0.4) 
tE0~ 

where F decomposes into F"+ F s (unstable and stable free energy func- 
tions); the function F is obtained from a partition function defined for any 
real fl by 

z,,(/~)= ~ ~(u)" 
U~ U. 

p(U)>O 

where U. is a partition whose diameter goes to 0 when n goes to + c~, and 
we have for any real 

F(fl)= lim _ 1  Log Z,,(fl) (0.5) 

We relate then f with other functions f "  and f s (the Legendre-Fenchel  
transforms of F u and F s, and by the way the dimension spectra of the 
measures p" and /as), and also to the Hausdorff  dimensions of Gibbs 
measures whose supports  are the singularity sets of the measures/.t" and/~s. 

1. D E C O M P O S I T I O N  OF THE M E A S U R E  p 

We associate to the measure p a measure v defined on the subshift of 
finite type Z" A 

/./---- ~*V  

and the measure v is the Gibbs measure of the real H61der continuous 
function ( :  Z" A ~ R, where we have c'~ 

~ = ~ o z t  and P~=P.(~)=Pr 
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Let us define the Jacobian of the measure v on L'~- by 

v(~r(c)) 
Jac v ( x ) =  lim 

:~ . . c~  v(C) 
IcI  ~ o  

(1.1) 

where the sets C are cylinders. This Jacobian is also the R a d o n - N i k o d y n  
derivative of the measure v over _r~-, which is v a.e. equal to a H61der con- 
tinuous function. Let us denote 

~" = - Log Jac v (1.2) 

Let us remark that the function ~" is H61der continuous and that ~ ' < 0 .  
We then define its Gibbs measure/~,, .  

We associate to the function ~" the Ruel le-Perron-Froebenius  
operator on C(X~-):  L .  (13) For  any function K ~  C ( X ~  ), we compute  L(K)  
applied to any ._v e _r~- with the formula 

[ L ( g ) ] ( x ) =  ~ K(),)exp{~"()_,)} 
) ' :  

a ( y )  = .y" 

and the iterations for any integer n 

In - I } 
[ L " ( K ) ] ( S ) =  Z K(v )e xp  =~o("[aJ(_y)] (1.3) 

) , :  k j  

r = x 

We have the following results~8~: 

and: 

lim I L o g [ L " ( 1 ) ] ( . s ) = P ( ( " )  f o r any  S e X  + 
t t ~  q-o(. ~/ 

�9 X + There exists a H61der continuous function h + ~ C( A ) such that 

h + > 0 and L(h + ) = h + 

�9 There exists a a-invariant measure p + ~ M , , ( X ~  ) such that 

L * ( p + ) = p  + 

�9 The measure v + = h+p + ~ M, , (Z~  ). 

We have then 

v+ =/~r on ~(Z'J- ) 
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where ~(Z'.~-) denotes  the Borel a lgebra  of X~-, and the measure  v + 
satisfies ~2~ 

h,~.(a)+ ~ ~" dv + = 0  

which implies P ( ( " ) = 0  and for any measure  peM, , (X~) ,  pq:v +, we 
have~S, ~2~ 

h,,(~)+ f C' dp<O 

By the same method we int roduce the function (" on Z' A by 

~'" = - L o g  Jac v (1.4) 

where we have 

v(a ~(C)) 
Jac v ( x ) =  lim 

.,~i..c~ v(C) 
ICI ~ o 

The function ~~ is H61der cont inuous  and ~~< 0, and we have: 

�9 There exists a H61der cont inuous  function h-  e C(Z~ ) such that  

h > 0  and L ( h - ) = h -  

�9 There exists a a - invar iant  measure  p-  ~ M.(.S.~ ) such that  

L * ( p - ) = p -  

�9 The measure v- = h - p -  e M,~(XA ). 

We have then 

v ~ = pC, on ~ ( X ~  ) 

where p;, is the Gibbs  measure  of the function (s. Moreover ,  the pressure 
P ( ( ' )  = 0 and it is only achieved by the measure  v - .  

There  exist posit ive constants  c~ and Ci which bound  the rat ios in the 
definition of  the Gibbs  measures:  

~, + {_y e Z J / x o  = yo ..... x .  = y . }  
c, ~< e x p { Z f = o  ( . [ a j ( ~ ) ]  } ~<c,  (1.5) 

822,/76/5-6-18 
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since we have v + = #r on ~(X~" ), and 

V-{).. '6XA/X k = y _ k  ..... XO=YO} 
C2~< exp {E o= _k ~.~[rr.i(=r)] } ~<C2 (1.6) 

since we have v - =/~e on .@(XT~ ). 
The expressions (1.5) and (1.6) imply that there exist positive con- 

stants c and C such that 

v{ v ~ x , , / x _ k  = y _ ~  ..... x~  = y ,  } 
c <~ <<. C 

v + { ) , e X d / X o = Y o  ..... x p = y . }  x , , -  { Z e _ r ~ / x  k = y - k  ..... x o = y o }  

We have thus obtained 
dv 

C<~ d(v+ xv_)<~ C (1.7) 

If we associate to the measure v § (respectively v - )  the measure /~" 
(resp./~'~) defined on the unstable (resp. stable) manifolds, we verify that Itgl 

at1 
c~< C (1.8) 

d(l~" x #") <~ 

Let us denote the functions ~" and r defined on A and which satisfy 

~"=~"ozr  and ~~ = ~~o 7r (1.9) 

which means that for x = n(._r), we have, for instance, r = ~"(S), and the 
measure/~" (resp./~") is the Gibbs measure of the H61der continuous func- 
tion r (resp. ~~). (Remember that in ref. 21 we have ~ " =  ~~= - h . )  

We use this decomposit ion to compute  the free energy functions F" 
and F s associated with partitions situated on unstable and stable manifolds 
and to the measures #" and p~, and then the free energy function F 
associated with the local product  of the previous partitions and to the 
measure #. 

2. EXISTENCE A N D  REGULARITY OF 
THE FREE ENERGY FUNCTION 

Let us define the partitions (U~),,~>l and (U;'I),,> ~, defined on the 
unstable and stable manifolds. Denote U,,= [UI~, U;*,] the local product  
partition defined on the basic set A and which is composed of sets U =  
[ U t ;  U2], where we have U,,= [U,~; U;~,]. ~18'2tl 

We shall use this partition in order to decompose the associated free 
energy function F into the sum F " +  FL 
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2.1. Decomposit ion of the Free Energy Function 

Using (1.8), we get for any U =  [U, ;  U2] 

c/du(Ul  ) ~ s ( u 2 )  ~ ~ ( U )  ~ C ~ l U ( U l ) [ . i s ( u 2 )  

and we have thus 

#( U) > O.c,.,u"( U~) ~"( U.,) > O 

(2.1.1) 

It follows that we have for any real fl 

inf(c a; C a) #"( U~ )a #~( U2 )a ~< #( U )a ~< sup(ca; C a) #,,( U~ )t~ #.,.( U2 )t~ (2.1.2) 

If we define as in (0.5) 

F~'tfll = _ !  Log y, ~,"(U,? 
El U t E U~ j 

/~u(Ui)?>O 

F,S t f l l= - lLog  y~ ~,-~(U2) a 
n u2 E v~ 

pq U 21 > 0 

F,,( fll = - l  Log ~ /a(U)/~ 
El U ~ Un 

I d U ) > 0  

we obtain for any real fl 

IF,,(fl)-F,','(fl)-F,i(fl)l <.% Ifl--~] sup(lLog el; ILog CI) (2.1.3) 
n 

and this implies that the sequence of functions (F,,),,>~ is convergent if and 
only if the sequences (F~),,>~t and (F,~,),,~ are also convergent; we get 
therefore in that case for any real fl 

F(f l )= lim F,,(fl)= lim F,','(fl)+ lim Fd(fl)=F"(fl)+F~(fl) 
(2.1.4) 

It suffices therefore to compute the functions F" and F ~ in order to get F. 

2.2. Computat ion  of the Free Energy Function 

The unstable free energy function is given by the following result. 

T h e o r e m  2.2.1. We have for any real fl 

F"( f l )=  inf [ h ~  
pEM~,,, ~ J" dp J 
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Remarks. This functional is a large-deviations functional and it is 
lower semicontinuous. 

It is achieved by a unique measure p}~, which is the Gibbs measure of 
the H61der continuous function f l~" -F" ( f l ) J " .  

The proof parallels the proof of Theorem 2.2.1 in ref. 21. It is divided 
into three steps: 

Proposition 2.2.2. We have for any real fl 

,, >. [ h , + ~ I r  l 
lim - F , , ( f l ) ~ . - s u p  L f - ~  J 

n ~  + ~ ,  p ~ M g ( A )  

p ergodic 

Proposition 2.2.3. We have for any real fl 

sup F h~ [ h~  
,,oM.,.,L F-7"~-# _l=.osup..,., L ~----T~p j 
p ergodic 

Proposition 2.2.4. We have for any real fl 

l im-F , ; ' ( f l )~<  sup ~ h'+flS r J 
We give here the sketch of the proof of Proposition 2.2.4. We take the 

partitions ( U,"),>. ~ and ( U;,'),>~ ~ to be uniform: IUI -~ e-" ( " signifies that 
the ratios of the two members are bounded by constants). Following refs. 
18 and 21, we associate to any interval Ue  U,; an integer n(U) (which we 
can identify as the size of the interval--or the associated cylinder C - -  
and e - "  represents its length) and an element y(U)  ~ U (the center of the 
cylinder) such that: 

�9 The cylinder C = {x e X,]/(S)i = (Y(U))i, 0 ~< i < n(U) } satisfies 

Sg'(n(C) AU) = 0 [or#"(U)~_v+(C)] 

�9 I g " ( U ) l  ~- 1. 

We have then 

f"'v)-tJ"[gJ(y( } 1  -" e x p  j~o U))]  ~- Ul~-e (2.2.1) 
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and 

InlU)- 1 
exp ~ j~o 
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{"[gJ(y(U))]} ~- #"(U) (2.2,2) 

We put together the intervals U corresponding to the same "size"; let then 

E, = { UE U,",/n(U) = i} (2.2.3) 

The sets E i a r e  only defined for integers i varying in a linear scale, since, 
using (2.2.1), we get 

[?_ o] 
ie = [hal; na,] 

su J"; i n f -  J" 

At the rank n there exists for any real fl an integer i(n) [=i(n,  fl)] such 
that 

U e E, U e E,.,) 

and then we obtain 

I L o g {  ~ p"(U) t~} (2.2.4) --F'7(fl)~n uE&., 

We define for integers k the sets 

{ / } Kk= U e E , . ) / -  ~ ~"[gffy(U))]e[k;k+l[ (2.2.5) 
~ j = O  

The sets Kk are only defined for integers k varying in a linear scale, since, 
using (2.2.1) and (2.2.2), we get 

k e  [i(n) inf -~" ;  i(n) sup - ~ " ]  = [cn; dn] 

This implies the existence of an integer k(n) [ =k(n, fl)] such that 

m E K k U E Kkln b 

and we get therefore 
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Let us remark that the intervals UeK, c,, , have the same size i(n) and p 
measure exp{-k(n)} .  It follows from (2.2.6) that we have 

-F,7(fl) ~ l_ Log # Kk,,,~- fl k(n___)) 
/7 t l  

or also 

- F , ~ ( f l ) ~  Log # Kk"~ fl i(n) ki[n I n  (2.2.7) 

Let us define the probability measures 

1 ] i ln)  1 
~. gJO,, (2.2.8) 0,, #Kkl,,~ ~ 6,. e,~ and P"= i (n )  i=o 

U E Kkln) 

The sequences 

1 
- Log # K k ( , ,  ~ and 
n 

P ,, 

take their values in compact sets [0; 1] and M(A). We can suppose that 
they converge (there exists a common subsequence ...) and we get 

1 
- L o g  # K k ~ , , ~ y ~  [0; ! ]  and p,,-op~Me(A) 
H 

(the limit is g-invariant!) 

Let us compute the integral 

J"dp,, #Kk,,,, ~ ~. J"[gJ(y(U))] 
U E  gklnl j = 0  

Using (2.2.1), (2.2.3), and (2.2.5), we have for any U E K k I , ,  ~ 

and this implies 

1 i(n) I - - E l  

i(n} ~ J"[gi()'(U))]'~i(n--'-j} 
i = 0 

- - i 7  

J" dp,, i(n) 

We get therefore 

i(n) 1 t 

n ~ -- J" dp 
lim (2 .2 .9 )  
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We obtain similarly 

k(n) },,,=i_r (2.2.10) lim i (n )=  

or also 

lira k(')= I-~'dp 
,,~+~_, n I - J " d p  

An upper bound of the real ~ is given by 

h p  
~ <<. e'h,, ~ i _  J,, d p (2.2.11) 

using a proof due to Misiurewicz (ref. 4, p. 145) adapted in ref. 21. 
We obtain therefore 

lira - F"~ a ~ = ~ - #r'~" <<. h " + ~ I ~" dp  
, , - + ~  , . . . .  I _ J .  dp 

(remember that this is a subsequence). This result implies Proposition 2.2.4. 
By the same method we prove the following (replace g by g -  ') 

Theorem 2.2.5. We have for any real /~ 

FS(/~)= inf Ih'+flIr 

2.3. Regulari ty of the Free Energy Function and of 
Its Legendre-Fenchel  Transform 

Let us define the functions G" and G" for any pair (x, y) ~ R 2 by 

G " ( x , y ) =  sup [hp+f(x~"+yJ")dp]=P(x~"+yJ") 
p r Mg(A ) 

and 

G"(x, y)= P(x~" + yJ ~ ) 

which represent the pressures of the HSlder continuous functions x~" +yJ" 
and x~S+yJ ~ (and are dynamical free energy functions). We know that 
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they are real analytic in both variables c~8~ and it is easy to prove that we 
have for any real/~ 

a"(/ f f ,  - F ' ( / ~ ) )  = a"( /3 ,  - F " ( / ~ ) )  = 0 ( 2 . 3 . 1 )  

If we denote by /a~ (respectively P~i) the Gibbs  measure of the function 
fl~"-- F"(fl)  J "  [resp. fl~"- F~(fl) J"] we prove t h a (  '4' 15. is. zll 

ay J (~' - F " ( / 3 ) )  = d u ~ < 0  (2.3.2) 

where 
X,,; = - f  J" dlt~ 

is the Lyapunov  exponent  in the unstable direction, and 

(0G"  f (fl, -F"(f l))= j r dl~ < 0 (2.3.3) -fix/ 
Using (2.3.1), (2.3.2), and an inversion theorem, we prove that the function 
F"  (resp. F') is real analytic on I~; using (2.3.3), we prove that it is strictly 
increasing on R, since we have for any real fl 

(F") '  ( f l )=  j , , d p > O  (2.3.4) 

We have also the following property:  

T h e o r e m  2.3 .1 .  The function F"  is either linear (degenerate case) 
(this is the case when J" is homologous  to cr or strictly concave. 

Proo[ of Theorem 2.3. 1. The proof  works in two steps and is much 
harder than the one in ref. 21. 

�9 If there exists a constant  c such that J" is homologous  to cr (c > 0), 
then we have from (2.3.4) for any real/~ 

(F')' (fl)=c 

and the function F" is linear. In this case, its Legendre-Fenchel  t ransform 
f "  [see (0.4)] is only defined at the point c withf"(c)= c [and P(cJ")= 0].  

�9 Otherwise, we differentiate (2.3.1) in order to obtain 

[ o 
(F")"  ( f l )=  ~.r \ao"/ay) \ao"/ay) ay \ao"/ay)_l (fl' -F"(fl)) 
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which becomes 

(F")"  (fl) 

( 82G"/ Ox "- )( c3G"/c?y )2 _ 2( OG"/Ox )( OG"/4v )( c32G"/ax c?y ) 
+ (o'-a"/c?y 2)(c?G'/Ox) 2 

(0G'Tc?y) -~ 

(fl, -- F"( fl) ) 

Using (2.3.2)-(2.3.4), we obtain then for any real fl 

(F") '  (fl)2 (8,_G,,/Sy2) _ 2(F") '  (3)(02G"/Ox By) + (O'-G"/Ox 2) 
( F " ) "  ( f l )  - 

(OG"/Oy) 

( fl, - F"( fl ) ) 

Following ref. 18, we identify 

and for any real w [ m o d ( 2 n ) ]  we get 

e -ik"' J " x ( J " o g k ) d p ~  - J " d p  g O  
k ~ Z  

and 

(2.3.5) 

C;'(A) ~ R + 

k E Z  

h • (h ogk) d~,7 ' -  h d ~  

(7 is such that  the functions ~" and J"  are ),-H61der) is a half-definite 
quadrat ic  form on C;'(A), and its kernel is the set 

E =  { C + K o g - K :  c~  R, K 6  C~'(A)} 

Q: 

Since the proper ty  "there exists a constant  L such that d(x, [ x ; y ] ) ~ <  
Ld(x,  y y '  is satisfied, c~8~ the map  
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I f p  represents the bilinear form associated to Q o n  [Cr (A)]  2, we can write 

~X2 j (~, -F " (p ) )=  Q(?,") 

:") 
Ox Oy: (fl' -F"(f l ))=p(r 

a),2 ] (D, -F"(fl))= Q(J") 

The expression (2.3.5) becomes 

1 
(F")" ([3) = S J" dl~'~ Q(~"- (F")' (/3) J") (2.3.6) 

The map Q is positive on the vector field Vect(~"; J") since the funtions U' 
and J~ are not homologous.  We have then for any real/~ 

Q(~"-(F") '  ( f l)J")>O 

and using (2.3.2) and (2.3.6), we obtain for any real fl 

(F")" ( f l ) < 0  (2.3.7) 

In that case the function f "  is defined on an interval [a';; ~ ]  c R + *, is real 
analytic, and is strictly concave on ]a'~; a~[ with 

1 
(f")" (~ )=  (2.3.8) 

(F")" [ ( f " ) '  (~)3 

We have similar results with F ~ and f ' ,  and we prove that for any real 

f (~ )  = f " {  (F")' [. /"(~)] } +f~{ (F ' ) '  [ -f ' (~)]  } (2.3.9) 

Following ref. 21, we prove that we have for any real a e  ]~ , ;~2 [  

f (~) = HD(C,) = HD(C + ) =  HD(C;  ) (2.3.10) 

The inequality HD(C+)<~f(~) comes from a large-deviations result. The 
reverse inequality HD(Cf)>_,f(~) uses Frostman's lemma. 

We prove also that 

O~ 1 = 0{ I" + ~'~ and a~_ = ct.~_ + a~_ 
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where we have, for instance, 

c~';= inf (F~) ' ( f l )=  lim (F") '  (/3) 
/ l eR  //-- +,r., 

~ = s u p  (F")' (/3)= lim (F~) ' (fl) 

and we can find g-invariant measures Pt and P2 such that 

l r dp, ,,_ I r ap2 
~'~= J" dpl and c~2-~ J,  dp2 

and we have also 

hp  l 
f " ( ~ 7 ) = i _  j,, dp, and 

We find therefore 

1 3 7 3  

(2.3.11 ) 

hp2 
f " ( ~ ) = i _ j , , d p z  (2.3.12) 

.f(a,)=f"(a~)+fs(ot;) and f(o~2)=f"(a~_)+f"(o~) (2.3.13) 

and all the functions are defined at their boundaries. We identify now the 
values taken by the function f "  with 

~e  ]~l ;  c<2[ let fl = ( f " ) '  (c~) 

(2.3.14) 

for 

then w e  h a v e  114" is. 21) 

f"(a) = HD(C')= HD(p~) 

with p~(C:) = 1 (C~ is the singularity set of p"), and 

f"(cd~) = HD(pj ) and f " ( ~ )  = HD(p2) 

We use these results to obtain the main theorem. 

(2.3.15) 

3. PROOF OF THE D I M E N S I O N  SPECTRUM THEOREM 

We generalize results obtained in ref. 17 in dimension one, and these 
results are similar to those in ref. 21. They are as follows. 

T h e o r e m  3.1.. For  any real ~ e l - a j ; ~ 2 ]  there exists a g-invariant 
measure p~ such that 

Log/a(R)  
f(ct)= HD(#~) and , a /a~ a.e. 

Log [RI IR140  
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Moreover,  there exist positive reals r and r/ such that 

[C7; C;;] ~ C~ 

and the Hausdorff  dimensions of the two sets coincide. 

It suffices to note: 

�9 For ~ ]c~l;~2[ (and/~ = f ' ( ~ ) ) , / a , = / a ~ x  U~ ~. 

�9 For  ~ =r ,u, = p l  x ~l. 

�9 For  ~ = ~ 2 , / t = P 2 X ~ z .  

Here the measures ,~t and ~2 are associated to cr and cr [see (2.3.11) and 
(2.3.12)]. 

The function f is degenerate if and only if the functions f" and f~ are 
degenerate. In that case, we have 

c = c" + c", with . f ( c )  = c, f " ( c " )  = c", f ' ( c  s)  = c ~ 

If the function f takes the value 2, then the measure /~ is absolutely con- 
tinuous to the Lebesgue measureJ ~ 
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