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Dimension Spectrum of Axiom A Diffeomorphisms.
II. Gibbs Measures

Dominique Simpelaere'

Received November 2, 1993

We compute the dimension spectrum f(a) of the singularity sets of a Gibbs
measure defined on a two-dimensional compact manifold and invariant with
respect to a C? Axiom A diffeomorphism. This case is the generalization of the
case where the measure studied is the Bowen-Margulis measure—the one that
realizes the topological entropy. We obtain similar results; for example, the
function f is the Legendre-Fenchel transform of a free energy function which is
real analytic (linear in the degenerate case). The function f is also real analytic
on its definition domain (defined in one point in the degenerate case) and is
related to the Hausdorfl dimensions of Gibbs measures singular with respect to
each other and whose supports are the singularity sets, and we finally decom-
pose these sets.

KEY WORDS: Multifractal; thermodynamic formalism; Hausdorfl dimen-
sion; free energy function; large deviations; Gibbs measures.

INTRODUCTION

Our aim is to study the dimension spectrum of a Gibbs measure defined on
a two-compact manifold and invariant with respect to a C? Axiom A dif-
feomorphism. This article follows ref. 21, where we studied the same
problem in an important particular case, the case where the measure is the
Bowen-Margulis measure, the one that achieves the maximum of topologi-
cal entropy (it is the Gibbs measure of 0); the present paper is the second
part of this work. We shall see that the results are very similar, and the
proofs parallel in general those in ref. 21. Let us remark that the original
idea of this work comes from ref. 2, where one studies the dimension
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spectrum of some dynamical systems (Markovian transformations) defined
on the interval or the circle.

Muitifractal analysis is concerned with the study of ratios of the
measures of small sets U (|U| — 0, where |U| denotes its diameter), and we
want to obtain some information in the so-called singularity sets defined
for any positive real a:

C}r={x/a*(x)=a}, C; ={x/a"(x)=a}, C,=CInC;
(0.1)

where the maps o™ and o~ denote local dimensions and are defined by

U
at(x)= lim Log_u() and o (x)= lim M (0.2)
.\"euilnl(%/) LOg I Ul .\‘leUiInl( lol) LOg | Ul

There exists a unique real « (when the measure y is ergodic) which satisfies
a(x)=a pae. and wc=1

In the case where for different values of a the sets C, are not empty, we
compute their Hausdorff dimensions in order to differentiate them, and we
define the dimension spectrum f(a) by

f(ay= HD(C,) (and f= —0 If C, = &) (0.3)
Our main results are:

e fla)=HD(C,) for ae[a;;2;]JcR** and f= — oo otherwise.

« fis real analytic on Ja,;a,[ when a, #a, (in particular, we make
explicit the degenerate case a, = a,).

o f(a)y=HD(p,)=inf{ HD(A)/u,(A)=1}, where p, is a measure

whose support is C,, and there exist positive reals t and n such that
(CyC]<eC,

where [ ;-] denotes a local product,’- 82" and these two sets have the
same Hausdorff dimensions.

The notations and definitions are the same as in ref. 21. The measure
u is the Gibbs measure of a real Holder continuous function ¢: 4 — R,
where the basic set A is the support of the measure y, which is the unique
measure which achieves the pressure of ¢,

P,=P/($)= sup [hp + j é dp]

pe M)
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Analogy with Part |

We first establish a “decomposition” of the measure y, not like a
product such as the Bowen-Margulis measure, but like

du
c€«—<C
d(u" = p*)

where ¢ and C are positive constants and p* (resp. ¢°) is a measure defined
on the unstable (resp. stable) manifold.

With this decomposition we prove that f is the Legendre-Fenchel
transform of a free energy function F, ie,,

f(a)=innl; {ta — F(1)} (0.4)

where F decomposes into F“+ F° (unstable and stable free energy func-
tions); the function F is obtained from a partition function defined for any
real 8 by

ZB= Yy wuy
Ue U,
wU)>0

where U, is a partition whose diameter goes to 0 when n goes to + co, and
we have for any real f

F(B)= lim —%Log Z,(B) (0.5)

n— +ac

We relate then f with other functions f“ and f* (the Legendre-Fenchel
transforms of F“ and F*, and by the way the dimension spectra of the
measures yx“ and p°), and also to the Hausdorff dimensions of Gibbs
measures whose supports are the singularity sets of the measures p¢* and p°.

1. DECOMPOSITION OF THE MEASURE

We associate to the measure u a measure v defined on the subshift of
finite type 2,

pu=m*y

and the measure v is the Gibbs measure of the real Holder continuous
function {: £, — R, where we have'"

{=¢om and P =P, ([)=Py
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Let us define the Jacobian of the measure v on 2} by

Jacwy) = tim o)
xein(C) \’(C)
{Cl -0

(1.1)

where the sets C are cylinders. This Jacobian is also the Radon-Nikodyn
derivative of the measure v over £}, which is v a.e. equal to a Holder con-
tinuous function. Let us denote

("= —Loglacv (1.2)

Let us remark that the function {“ is Holder continuous and that {* <0.
We then define its Gibbs measure p..

We associate to the function (* the Ruelle-Perron—Froebenius
operator on C(Z}): L.'"* For any function Ke C(Z'}), we compute L(K)
applied to any xe Z'} with the formula

[LK)I(x)= Y K(y)exp{l“(»)}
a(,_rf‘).=._\'
and the iterations for any integer »

n—1
[L"(K))(x)= X K(;V)CXP{ C"[Uj(_}’)]} (1.3)

3 J
a(y)=ux

We have the following results!'®:

lim %Log[L"(l)](.x)=P(C“) forany xel2’7

n— +

and:

o There exists a Holder continuous function #* € C(Z ) such that
h*>0 and Lhty=h*
« There exists a o-invariant measure p* € M (2 }) such that
L*(p™)=p"
e The measure v* =h"p*teM (Z7).
We have then

vi=p on #(X7)
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where #(Z 7 ) denotes the Borel algebra of 27, and the measure v*
satisfies‘'?!

h‘,¢(a)+_[C" vt =0

which implies P({*)=0 and for any measure pe M (X7), p#v*, we
havc(ﬂ,ll)

hio)+ [ (v dp<0
By the same method we introduce the function {* on 2] by

{*= —LogJacv (1.4)

where we have

7 7lC
Jacv(x)= tim 22D
xeinyC) V(C)
ICl—0

The function {* is Holder continuous and {* <0, and we have:

» There exists a Holder continuous function &~ e C(Z ;) such that
h=—>0 and Lh™)=h"
» There exists a o-invariant measure p~ € M (2, ) such that
L*(p")=p~
o The measure v- =h"p~ e M (2 7).
We have then
V= U on B(L)

where .. is the Gibbs measure of the function {*. Moreover, the pressure
P({*)=0 and it is only achieved by the measure v~.

There exist positive constants ¢; and C; which bound the ratios in the
definition of the Gibbs measures:

pt {;}, € 2;/.\‘0 =Ygy Xp = yp}

exp{¥ /.o (“[o’(x)]}

<C, (1.5)

o<

822/76/5-6-18
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: +
since we have v* =y on #(2'7), and

v'{zvef;/xfk =Y ks X0=y0}
exp{X)_ _, {’[07()])
since we have v~ =y, on #(Z}).

The expressions (1.5) and (1.6) imply that there exist positive con-
stants ¢ and C such that

¢, < <G, (1.6)

c< V{LVGZ,,/.\‘_,\.=yﬁ,\.,...,x,,=y,,} <C

\\'+{J’62;/.‘c0=y0,..., X, =Y, b XV {yeZ /X k=Y _sss Xo=Vo}

We have thus obtained
dv
S—F——< 1.7
¢ divt xv~™) (17)
If we associate to the measure v* (respectively v~ ) the measure p“
(resp. u*) defined on the unstable (resp. stable) manifolds, we verify that'®!
du
cS——<C 1.8
d(p > ') (%)

Let us denote the functions £* and & defined on A and which satisfy
{=E&n and (F=&anm (1.9)

which means that for x = n(x), we have, for instance, “(x)={"(x), and the
measure p* (resp. p*) is the Gibbs measure of the Holder continuous func-
tion &“ (resp. &*). (Remember that in ref. 21 we have {"=¢"= —h.)

We use this decomposition to compute the free energy functions F*
and F* associated with partitions situated on unstable and stable manifolds
and to the measures u“ and p°, and then the free energy function F
associated with the local product of the previous partitions and to the
measure p.

2. EXISTENCE AND REGULARITY OF
THE FREE ENERGY FUNCTION

Let us define the partitions (UY),., and (U}),., defined on the
unstable and stable manifolds. Denote U,=[U}, U;] the local product

no

partition defined on the basic set 4 and which is composed of sets U=
[U,; U,], where we have U,=[U¥; U:].\"%2D

We shall use this partition in order to decompose the associated free
energy function F into the sum F“+ F*.
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2.1. Decomposition of the Free Energy Function
Using (1.8), we get for any U=[U,; U,]

(U i (Uz) < p(U) < Cu(Uy) p*(U) (2.1.1)

and we have thus
wU)> 0= p"(Uy) p'(Uy) >0

It follows that we have for any real §
inf(c?; CPYpu“(U ) w*(U,)P <u(U Y <sup(c#, CPY p(U )P (U, (2.1.2)
If we define as in (0.5)

|
F(f)=—-Log X )’

U|EU"
U >0

1 ‘
Fip)=—~Log T w(U;)"
UgEU,':
Ui >0

Fn(ﬁ)___LOg z #(U)l’

Ue U,
w)>0

we obtain for any real §

|F,(B)— F(BY— F(B) |<ﬂSUP(IL0gc| [Log C1) (2.1.3)

and this implies that the sequence of functions (F,), ., 1s convergent if and
only if the sequences (F)),., and (F}),., are also convergent; we get

n

therefore in that case for any real g

F(p)= lim F(f)= lim F/(B)+ lim F(p)=F"(B)+F(p)
‘ (2.14)

It suffices therefore to compute the functions F“ and F* in order to get F.

2.2. Computation of the Free Energy Function
The unstable free energy function is given by the following result.

Theorem 2.2.1. We have for any real 8

v h,+ B[ dp
F(B)_pelg,,fm)[ [Jdp :|
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Remarks. This functional is a large-deviations functional and it is
lower semicontinuous.

It is achieved by a unique measure uj, which is the Gibbs measure of
the Holder continuous function & — FY(8) J“

The proof parallels the proof of Theorem 2.2.1 in ref. 21. It is divided
into three steps:

Proposition 2.2.2. We have for any real f

h,,+ﬂfi"dp}

lim —FfB)> sup |: 7" dp

n— + % pe Mg(A)
p ergodic

Proposition 2.2.3. We have for any real f

h u u
sup [ 0+B.‘;§ dp]= sup |:hn+ﬁ.‘.ué dp:l
pe M) _[_-’ dp pe M) I_J dp

p ergodic

Proposition 2.2.4. We have for any real j

im —FY(B)< sup [

n— +o pe MglA)

h,+B e dp]
[—Jdp

We give here the sketch of the proof of Proposition 2.2.4. We take the
partitions (U*), ., and (U;),, to be uniform: [U| ~e~" ( ~ signifies that
the ratios of the two members are bounded by constants). Following refs.
18 and 21, we associate to any interval Ue U, an integer n(U) (which we
can identify as the size of the interval—or the associated cylinder C—
and e~ " represents its length) and an element y(U)e U (the center of the
cylinder) such that:

¢ The cylinder C={xe 2;/(x);=(y(U)),, 0<i<n(U)} satisfies

p(mn(C)4U)=0 [orp“(U)=v*(C)]
. 1g"(U) > 1.
We have then

nu)—1
eXP{ ) J"[g’(Y(U))]}leI:e"’ (2.2.1)

j=0
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and
muU)y—1 )
CXp{ > é"[g’(y(U))]}zu“(U) (22.2)
j=0
We put together the intervals U corresponding to the same “size”; let then
E={UeU,/n(U)=i} (2.2.3)

The sets E; are only defined for integers i varying in a linear scale, since,
using (2.2.1), we get

€ z . ] [na ]
s = s hd,
sup —J* inf — J* o

At the rank » there exists for any real  an integer i(n) [ =i(n, )] such
that

Y uUY < Y puy?

UeE; Ue Ejn)
and then we obtain
1
—F,,"(B)~—Log{ > u"(U)”} (2.2.4)
n Ue Eyp)

We define for integers k the sets

nuy-—1

5 c"[gfuw))]e[k;kﬂ[} (2.25)

I=

K,= {UG Ei(n)/_
The sets K, are only defined for integers k varying in a linear scale, since,
using (2.2.1) and (2.2.2), we get
ke[i(n)inf —&% i(n)ysup —&¥] =[cn; dn)

This implies the existence of an integer k(n) [ =k(n, #)] such that

Y owUYs X U’

Ue Ky U € Kiyn)
and we get therefore
1
—F,,"(B)~—Log{ > u"(U)”} (2.2.6)
h U € Kigm)
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Let us remark that the intervals Ue K;,,, have the same size i(n) and u
measure exp{ —k(n)}. It follows from (2.2.6) that we have

k(n)

l
_F,‘,I(B) ~- LOg #Kk(n)_ﬁ
n n

or also
. ! i(n) k(n
—F,(B)~-Log #Kk(,,)—/i—g (2.2.7)
n n i(n)
Let us define the probability measures
1 i(n) —1
0.,= 8, and  p,=—— 9,  (228)
#Kkln) L’EZI\“, “ i(n) i=0 &
The sequences
1
;LOg #Kk(n) and [

take their values in compact sets [0; 1] and M(A). We can suppose that
they converge (there exists a common subsequence ...) and we get

1
- Log #Kim—v€[0;1] and p, > peM(A) (thelimitis g-invariant!)

Let us compute the integral

1 1 itny—1 ]
[ dp, = ¥ {.— Y J"[gf(y(U))]}

# Kion v L) 20
Using (2.2.1), (2.2.3), and (2.2.5), we have for any Ue K,,,

itny—1 n

Z Tl UN]~—

itn) i(n)

and this implies

—hn

J o~ i(n)

We get therefore

. i(n) 1
im "oy 2.
u—o]Tx n 4 j -J" dp (229)
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We obtain similarly

lim K _ . j & d (2.2.10)
"n— +ox I(n) ) p -
or also
fim k(” _[=¢dp
n— 4+ j J dp

An upper bound of the real y is given by

h,

<Yh,<+—H—
Y Y f I_J!tdp

(22.11)

using a proof due to Misiurewicz (ref. 4, p. 145) adapted in ref. 21.
We obtain therefore

. h,+ B[ & dp
1 — F =y — ! ”S.L__
n—.lT’:c "(B) Y ﬁ‘y‘y I'—Ju dp

(remember that this is a subsequence). This result implies Proposition 2.2.4.
By the same method we prove the following (replace g by g~ !)
Theorem 2.2.5. We have for any real

hp+ﬂjé"'dp]

F(By= inf |: [7dp

peMyAa)

2.3. Regularity of the Free Energy Function and of
Its Legendre~-Fenchel Transform

Let us define the functions G* and G* for any pair (x, y)e R? by
G“(x,y)= sup [h +f (VC"+yJ”)dp]=P(X§"+yJ")
pEMg(A)
and
G'(x, y)=P(xE" + pJ*)

which represent the pressures of the Hélder continuous functions x&* 4 yJ*
and x&° 4 yJ® (and are dynamical free energy functions). We know that
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they are real analytic in both variables''®’ and it is easy to prove that we
have for any real f

G“(B, —F“(B))=G*(B, —F(B))=0 (23.1)

If we denote by uj (respectively uj) the Gibbs measure of the function
BE“— F*(B) J* [resp BE* — F*(B) J*] we prove that!'* !5 18.21)

G
<W>(B’ — F(p))= [ J* du <0 (232)

where
Xy = —f S dug

is the Lyapunov exponent in the unstable direction, and

3G"
( )B —FU(p))= | &" dug <0 (2.3.3)

Using (2.3.1), (2.3.2), and an inversion theorem, we prove that the function
F“ (resp. F’) is real analytic on R; using (2.3.3), we prove that it is strictly
increasing on R, since we have for any real

L& du >0

F" ﬂ)_-“ledM

(2.3.4)

We have also the following property:

Theorem 2.3.1. The function F* is either linear (degenerate case)
(this is the case when J“ is homologous to ¢£") or strictly concave.

Proof of Theorem 2.3.1. The proof works in two steps and is much
harder than the one in ref. 21.

« If there exists a constant ¢ such that J* is homologous to ¢£“ (¢ > 0),
then we have from (2.3.4) for any real 8

(F) (B)y=

and the function F* is linear. In this case, its Legendre—Fenchel transform
[ [see (0.4)] is only defined at the point ¢ with f*“(¢)=c¢ [and P(¢J")=0].

» Otherwise, we differentiate (2.3.1) in order to obtain

o _ 0G*/ox 0G"/ox i 0G"/dx o
e =[5 (5w ) - () 3 (gm0 -
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which becomes

(F*)" (B)
(8°G*/0x7)(8G"/dy)* — 2(0G"/0x)(9G"/ay (9*G*/ox a)
+(0°G"/dy*9G*/ox )’
(8G“/ay)’

(B. —F“(p))

Using (2.3.2)-(2.3.4), we obtain then for any real f

(F*) (B)? (9°G"/dy®) — 2(F")' (B)(0°G"/dx dy) + (3°G"/ox?)
(0G*/dy)

(B, —F“(B)) (2.3.5)

(F)"(B)=

Following ref. 18, we identify

aZGu
<ax Qv) (B —FPN=73 {J Ex (J¥ogh) dujy— <J & d,u;;) x (J J d,u',‘,)}

keZ

and for any real w [mod(2n)] we get

Z e—ikn' {J‘ Jx (J“ogk) d#;_(j J dﬂ;>_} 20

keZ

and

2
z e {[ e gran ([ &) b0

keZ

Since the property “there exists a constant L such that d(x, [x;y])<
Ld(x, y)” is satisfied,"'®’ the map

Q: C'(A4)>R*

h— Y {Jhx(hog")du;‘]—<'[l1dy’/‘,>-}

keZ

(y is such that the functions & and J“ are y-Holder) is a half-definite
quadratic form on C7(A), and its kernel is the set

E={C+K-g—K:ceR, Ke(C'(A)}
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If p represents the bilinear form associated to Q on [C"(A1)]? we can write

2
(aan ) (B, —F“(B))=0Q(&")
X

aZG“ u _ u, Ju
(axay) (B, — F*(B)) = p(&“; J*)

626“
(T) (B, — F*(B)) = O(J*)

The expression (2.3.5) becomes

1
Fll ” = —— u__ Fll ' Jll 2.3.6
(P (B) = [ g Q" = (F*Y () ) (236)

The map Q is positive on the vector field Vect(&"; J*) since the funtions £
and J* are not homologous. We have then for any real f

Q" —(F*) (B)J*)>0
and using (2.3.2) and (2.3.6), we obtain for any real
(F'Y"(B)<0 (2.3.7)

In that case the function f* is defined on an interval [«}; a5] < R™ ¥, is real
analytic, and is strictly concave on Ja'; 5[ with
B 1

(F)" LMY (2)]

We have similar results with F* and f*, and we prove that for any real
o€ Joy; o[

Sy (@) (2.3.8)

S)=f"{FY L")} +f{FY [ (0]} (2.39)
Following ref. 21, we prove that we have for any real e Ja,; o[
fo)y=HD(C,)=HD(C})=HD(C]) (2.3.10)

The inequality HD(CX)<f(a) comes from a large-deviations result. The
reverse inequality HD(CZF)>f(«) uses Frostman’s lemma.
We prove also that

oy = o +a and 0y =0ty + oy
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where we have, for instance,

af = inf (F*) (ﬁ)=ﬁl~ir§% (F“) (B)

BeR

az=sup (F*) (B)= lim (F*) (B)

BeR B —-=

and we can find g-invariant measures p, and p, such that

u ud 5
w8 g fEde (23.11)
jJ"dpl ‘ [J“a’p2
and we have also
h h
fra)=—>— and fUaf)=—2—  (23.12)
U —Jvdp, 2 f—Jvdp,

We find therefore
Sloa)=f"(af) +f(a}) and  f(o,)=f"(a3) +/(a3)  (2.3.13)

and all the functions are defined at their boundaries. We identify now the
values taken by the function f* with

for aeJu,;a,[ let B=(/") (a)
then we have!'#'>-2!)
S“a)=HD(C5)= HD(uy) (2.3.14)
with uj(Cy) =1 (Cy is the singularity set of ), and
fof)=HD(p,} and  f“(a3)=HD(p,) (2.3.15)

We use these results to obtain the main theorem.

3. PROOF OF THE DIMENSION SPECTRUM THEOREM

We generalize results obtained in ref. 17 in dimension one, and these
results are similar to those in ref. 21. They are as follows.

Theorem 3.1. For any real ae[a,; a,] there exists a g-invariant
measure yu, such that

Log u(R)

f(a)= HD(#!) and Log lRl m"

o p,ae.
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Moreover, there exist positive reals t and n such that
[CyCleC,
and the Hausdorff dimensions of the two sets coincide.
It suffices to note:

» For ae Jo,;a,[ (and f=/"(a)), Ha= g X g
» Fora=o,, g, =p, x¢,.
o Fora=ua,, u=p,x¢,.

Here the measures &, and &, are associated to o and o3 [see (2.3.11) and
(2.3.12)].

The function f is degenerate if and only if the functions f* and f* are
degenerate. In that case, we have

c=c"+c, with f(c)=¢, fUc)=c", fi(c’)=c'

If the function f takes the value 2, then the measure u is absolutely con-
tinuous to the Lebesgue measure.'"!
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